Expression and regulation of type II iodothyronine deiodinase in cultured human skeletal muscle cells.
نویسندگان
چکیده
T4, which is a major secretory product of the thyroid gland, needs to be converted to T3 by iodothyronine deiodinase to exert its biological activity. After the molecular cloning of human type II iodothyronine deiodinase (DII) complementary DNA, DII expression was unexpectedly detected in human skeletal muscle tissue. In the present study, we have identified DII activity and DII messenger ribonucleic acid (mRNA) in cultured human skeletal muscle cells and studied the mechanisms involved in the regulation of DII expression in those cells. All of the characteristics of the deiodinating activity in cultured human skeletal muscle cells were compatible with those of DII. Northern analysis has demonstrated that DII mRNA, approximately 7.5 kb in size, was expressed in cultured human skeletal muscle cells. DII mRNA and DII activity were rapidly increased by (Bu)2cAMP, forskolin, or beta-adrenergic agonists and were negatively regulated by thyroid hormones in cultured human skeletal muscle cells. Although interleukin-1beta and interleukin-6 did not decrease DII expression in cultured human skeletal muscle cells, tumor necrosis factor-alpha decreased DII expression in those cells in a dose-dependent manner. These data have demonstrated, for the first time, that DII activity and DII mRNA are present in cultured human skeletal muscle cells, and that the DII expression is stimulated by beta-adrenergic mechanisms through a cAMP-mediated pathway and is negatively regulated by thyroid hormones and tumor necrosis factor-alpha.
منابع مشابه
Thyroid hormone activation in human vascular smooth muscle cells: expression of type II iodothyronine deiodinase.
Thyroid hormone has been reported to have significant effects on the peripheral vascular system, including relaxation of vascular smooth muscle cells and antiatherosclerotic effects. To exert its biological activity, thyroxine, which is a major secretory product of thyroid gland, needs to be converted to 3,5,3'-triiodothyronine (T(3)) by iodothyronine deiodinase. Type I iodothyronine deiodinase...
متن کاملPretranslational regulation of rhythmic type II iodothyronine deiodinase expression by beta-adrenergic mechanism in the rat pineal gland.
It has been demonstrated that type II iodothyronine deiodinase is present in rat pineal gland, and the deiodinase activity markedly increases during the hours of darkness, primarily through beta-adrenergic mechanism. We have studied the relationship between pineal type II iodothyronine deiodinase messenger RNA (mRNA) and the deiodinase activity to elucidate the mechanisms involved in the noctur...
متن کاملRegulation of type III iodothyronine deiodinase expression in human cell lines.
Type I iodothyronine deiodinase (D1) and type II iodothyronine deiodinase (D2) catalyze the activation of the prohormone T4 to the active hormone T3; type III iodothyronine deiodinase (D3) catalyzes the inactivation of T4 and T3. D3 is highly expressed in brain, placenta, pregnant uterus, and fetal tissues and plays an important role in regulating thyroid hormone bioavailability during fetal de...
متن کاملThyrotropin receptors in brown adipose tissue: thyrotropin stimulates type II iodothyronine deiodinase and uncoupling protein-1 in brown adipocytes.
It has been demonstrated that TSH receptors are expressed not only in thyroid gland but also in extrathyroidal tissues. Brown adipose tissue of guinea pig has been reported to express TSH receptor messenger RNA (mRNA), but the physiological roles of TSH receptors in brown adipose tissue have not been understood. We studied the expression and function of TSH receptors in rat brown adipose tissue...
متن کاملIsolation and optimization of mice skeletal muscle satellite cells using preplating method and culture media substitution
Introduction: Satellite cells are known as the main regenerative cell type in skeletal muscles. Our study established a modified digestion and preplating method for the isolation of slow or weak adherent cells for the enrichment of satellite cells. Low-survival rate of these primary stem cells prompted us to address whether cell culture medium substitution might change cell viability status. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical endocrinology and metabolism
دوره 84 9 شماره
صفحات -
تاریخ انتشار 1999